

Analysis for System Safety

Topics

- Systems
 - The processes
 - The Environment
- System Evaluation
 - Safety Process Mapping

What's a System?

"A system is a composite of people, tools, procedures, materials, equipment, facilities, and software operating in a specific environment to perform a specific task or achieve a specific purpose, support, or mission requirement."

- Roland and Moriarty, System Safety Engineering and Management

Systems ...a set of components
PEOPIS that act together as a whole to achieve a common goal Procedure acilities

Materials

Processes

 A set of interrelated activities that convert inputs into outputs (ISO 9000-2000)

If you can't describe what you're doing as a process you don't know what you're doing.

-W. Edwards Deming

Organizational Systems

- Aviation Systems (AS) are Organizations
- Their primary components are People
- Their processes are the sets of Activities that the people perform to accomplish the organization's goals
- Their Structures are the manner in which their people interact and how they do their jobs
- This necessitates an Organizational Focus to analysis and management of the system

Operational Environments

- Each system operates in a specific environment
- Environments include:
 - The physical environment
 - The business and economic environment
 - The national and cultural environment
 - The resource environment
 - The regulatory environment
- Systems must continually adapt to changes in their environment to operate efficiently, profitably, and safely

Open Systems

- The modern aviation system is characterized by:
 - Environmental complexity
 - Environmental turbulence
- Change is constant, frequent, and significant
- Adaptation of the productive system to the market environment is a recognized business reality
- Adaptation of the safety system to the current operational environment is also necessary

Aviation Systems - Production

- Aviation systems are the systems that convert inputs to outputs to provide goods and services to customers
- Productive systems also consume resources and work in defined, sometimes rapidly changing business and operational environments
- Modern aviation systems are often complex, frequently changing networks of suppliers and other service providers, e.g.:
 - Contract maintenance and training
 - Ramp services
 - Engineering and technical services
 - Code shares, wet leases and alliances
 - Business support (e.g. IT, admin)

Oversight Systems - Protection

- Basic Compliance Quality Control (QC)
- System Safety Process/Quality Assurance (QA)
 - Regulatory Components
 - Voluntary Components
- Traditional oversight systems stressed external (FAA) oversight and a "one size fits all" compliance approach
- Future oversight must be collaborative and tailored to system needs

Safety and Quality

- Safety is an an outcome of an organization's processes
- "Safety management" is really the result of management of process quality
- Managing the fundamental properties of process quality is the key to safety

Why Do System Safety?

- Air traffic is increasing
- Aviation operations are becoming more complex
- FAA oversight staff and resources are constrained
 - We can no longer afford to function as a direct source of QC
- Systems approach is proactive -
 - Stresses process improvements
- System safety is good business

System Safety Process

12

Documentation

System Safety and Risk Managemen

Regulations and System Safety

- The objective of the regulatory process is to enhance safety
- Regulations provide requirements for expected conduct of operations
- Regulations serve as risk controls
- It's not only if the regulations are applied but how they are applied that can make a difference

Types of Oversight

- Traditional:
 - Compliance orientation
 - Certification of organizations and key programs
 - Sampling of operations
 - Currently covers most certificate holders
- System Safety Methods:
 - First generation SS ATOS
 - Compliance is a means to an end
 - Transitional System SEP
 - SEP for smaller operators under development in Alaskan Region

"Accidents Are Not Due to Lack of Knowledge, but Failure to Use the Knowledge We Have."

Knowledge requirements

- Trevor Kletz, "What Went Wrong?"

What do I need to do?

What do I need to know?

How do I tell if it's happening?

Types of System Evaluation

- Situational Risk Analysis
 - Detecting hazards in the operating environment.
- Design
 - Quality and compliance built in.
- Performance
 - Compliance with the design (Are they doing it?).
 - Effectiveness of the design (Does it work?).
- Diagnosis
 - Finding causes and cures for identified problems.

Situational Risk Analysis

- Uses Risk Indicators
 - Impacts on system assessed
- Tools provided to assess system risk and develop surveillance plans.
 - ATOS ACAT, RMP
 - SEP SEAT, Risk Worksheets
- Others apply the System Safety/Risk Management process

System Design Evaluation

- Based upon six attributes
- Derived from quality, systems engineering, safety literature
- Primary tool (air carrier) is Safety Attribute Inspection (SAI)
 - Data recorded in ATOS D/R or PTRS
- Many certification and tech admin activities also evaluate and document system design
- Used as an initial and periodic comprehensive audit

ATOS Systems & Sub-Systems

Aircraft Configuration **Control**

Manuals

Flight Operations

Personnel **Training &** Qualifications

Route **Structure** Flight, Rest,

Technical & Duty Time Administration

Aircraft

Manual Requirements **Programs & Procedures**

Maintenance Personnel **Oualification** **Approved Routes &** Areas

Airman & Crew Limitations

Key **Personnel**

Records & Reports

Organization

Dispatch & Release

Training Programs

Crew & **Dispatch Oualifications**

Mechanic & Repairman Certification Maintenance Personnel

Other **Programs**

Air Carrier Operations System Model (ACOSM) Systems and Subsystems

System Management

Flight Operations

Maintenance Inspection Engineering Training (Maintenance, Crew, Other)

Resource Management

Planning

Passenger Services Maintenance Management & Control Training Requirements Management Resource Requirements Analysis

Policy & Procedure Development

Cargo Handling Maintenance Quality Assurance Training
Design &
Development

Resource Control & Procurement

Operational Control Ground
Operations &
Services

Aircraft Maintenance Training Delivery

Material Handling & Distribution

Information Management

Aircraft Operations

Engineering Support

Training Evaluation Human Resource Management

O

Performance Evaluation

- Evaluation designed to tell if:
 - The system is being used as designed and
 - If it is effective
- Primary tool is Element Performance Inspection (EPI)
 - Data recorded in ATOS D/R or PTRS
- Many surveillance and investigatory activities also provide data on system performance

Diagnosis

- Analytical Process
 - ORA's at CMT's
 - FSAIC supporting
- Additional Tools
 - Risk Management Plans (ATOS)
 - Risk Worksheets (non-ATOS)

Data is like garbage, you'd better know what you're going to do with it before you collect it.

Mark Twain

The Analysis Triangle

Source: Dr. Robert Holt

Decision-Making Hierarchy

Aviation Safety Oversight Processes

Safety
Management and
Oversight System
Processes (SMS/OS)
"Protection"

Relational Processes

Aviation System
Processes
(AS)
"Production"

25

"Production" Risk Management

For additional information contact:

FSAIC

Don Arendt
Manager, Flight Standards Safety Analysis Information Center
(703) 661-0516 don.arendt@faa.gov

Tim Liddle
Operations Research Analyst, SWA-CMO
(214)277-0206 timothy.i.liddle@faa.gov

